Polymer stress tensor in turbulent shear flows.

نویسندگان

  • Victor S L'vov
  • Anna Pomyalov
  • Itamar Procaccia
  • Vasil Tiberkevich
چکیده

The interaction of polymers with turbulent shear flows is examined. We focus on the structure of the elastic stress tensor, which is proportional to the polymer conformation tensor. We examine this object in turbulent flows of increasing complexity. First is isotropic turbulence, then anisotropic (but homogenous) shear turbulence, and finally wall bounded turbulence. The main result of this paper is that for all these flows the polymer stress tensor attains a universal structure in the limit of large Deborah number De >> 1. We present analytic results for the suppression of the coil-stretch transition at large Deborah numbers. Above the transition the turbulent velocity fluctuations are strongly correlated with the polymer's elongation: there appear high-quality "hydroelastic" waves in which turbulent kinetic energy turns into polymer potential energy and vice versa. These waves determine the trace of the elastic stress tensor but practically do not modify its universal structure. We demonstrate that the influence of the polymers on the balance of energy and momentum can be accurately described by an effective polymer viscosity that is proportional to the cross-stream component of the elastic stress tensor. This component is smaller than the streamwise component by a factor proportional to De2. Finally we tie our results to wall bounded turbulence and clarify some puzzling facts observed in the problem of drag reduction by polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

Application of the Turbulent Potential Model to Complex Flows

The turbulent potential model is a RANS model that avoids modeling the Reynolds stress tensor. As a result it has the ability to obtain the physical accuracy of Reynolds stress transport equation models at a cost and complexity comparable to popular two equation models. The model’s ability to predict channel flow, free-shear layers, homogeneous shear flow, stagnation point flow, backward facing...

متن کامل

Reynolds stress budgets in Couette and boundary layer flows

Reynolds stress budgets for both Couette and boundary layer flows are evaluated and presented. Data are taken from direct numerical simulations of rotating and non-rotating plane turbulent Couette flow and turbulent boundary layer with and without adverse pressure gradient. Comparison of the total shear stress for the two flows suggests that the Couette case may be regarded as the high Reynolds...

متن کامل

Turbulent Magnetohydrodynamic Elasticity: I. Boussinesq-like Approximations for Steady Shear

We re-examine the Boussinesq hypothesis of an effective turbulent viscosity within the context of simple closure considerations for models of strong magnetohydrodynamic turbulence. Reynolds-stress and turbulent Maxwell-stress closure models will necessarily introduce a suite of transport coefficients, all of which are to some degree model-dependent. One of the most important coefficients is the...

متن کامل

Turbulent Shear Stress in Heterogeneous Sediment-laden Flows

Current knowledge of the mechanics of alluvial channels depends very largely on calculations of turbulent shear stresses; typical examples are the beginning of motion of sediment particles and sediment transport in alluvial channels. If shear stress can be well defined in clear-water flows, comparatively little is known about shear stresses in sediment-laden flows. Einstein and Chien (1955) pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 71 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005